Physics-informed CoKriging: A Gaussian-process-regression-based multifidelity method for data-model convergence
نویسندگان
چکیده
منابع مشابه
Fast Gaussian Process Regression for Big Data
Gaussian Processes are widely used for regression tasks. A known limitation in the application of Gaussian Processes to regression tasks is that the computation of the solution requires performing a matrix inversion. The solution also requires the storage of a large matrix in memory. These factors restrict the application of Gaussian Process regression to small and moderate size data sets. We p...
متن کاملParametric Gaussian Process Regression for Big Data
This work introduces the concept of parametric Gaussian processes (PGPs), which is built upon the seemingly self-contradictory idea of making Gaussian processes parametric. Parametric Gaussian processes, by construction, are designed to operate in “big data” regimes where one is interested in quantifying the uncertainty associated with noisy data. The proposed methodology circumvents the welles...
متن کاملA prior near-ignorance Gaussian process model for nonparametric regression
A Gaussian Process (GP) defines a distribution over functions and thus it is a natural prior distribution for learning real-valued functions from a set of noisy data. GPs offer a great modeling flexibility and have found widespread application in many regression problems. A GP is fully defined by a mean function that represents our prior belief about the shape of the regression function and a c...
متن کاملA Gaussian Process Regression Model for the Traveling Salesman Problem
Problem statement: Traveling Salesman Problem (TSP) is a famous NP hard problem. Many approaches have been proposed up to date for solving TSP. We consider a TSP tour as a dependent variable and its corresponding distance as an independent variable. If a predictive function can be formulated from arbitrary sample tours, the optimal tour may be predicted from this function. Approach: In this stu...
متن کاملModel Learning with Local Gaussian Process Regression
Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2019
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2019.06.041